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 Parametric Equations 

o In ℝ2
, a curve in the xy-plane can be expressed as a two functions of a parameter t, 

i.e. )(tx and )(ty . 

o Number of parameters is the number of free variables. 

 Curves may only have one free variable (i.e. one parameter) 

 Surfaces have two free variables (i.e. two parameters) 

 Solids have three free variables (i.e. three parameters) 

o This allows complex curves to be more easily written as a parametric equation. 

o There are an infinite number of ways to parameterize a function! 

o Trigonometric identities may help parameterize circles and ellipses. 

o Master this concept! It will become critical for multivariable calculus. 

o Smooth - A parameterization is smooth on an interval if )(tx and )(ty have 

continuous first derivatives on the interval except possibly at the endpoints of the 

interval. 

o Piecewise smooth - A parameterization is piecewise smooth on an interval if the 

parameterization is smooth along subintervals of the interval. 

o Derivatives - Use chain rule.
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o Area of a surface of revolution:  
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 Vectors 

o Have magnitude and direction. 

o Contrast to scalar quantities 

o Dot product: 
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 Scalar! 

o Cross product: 

 Only valid in three-space: Let ,1aa 
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 Vector! Direction - use right hand rule. 

o In the xy-plane in two-space, a parameterized curve can be expressed with the 

vector-valued position function ),()( txtr 
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o Magnitude:
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